Researchers of the University of Bristol have reached to a detergent that can attract the oil spills from the water as a magnet. The detergent is formed from dissolved iron ions in a solution that contains chloride ions, bromide ions and other ions, the solution then works like a magnet that would break the surface of the layer of organic solution. Then the detergent could be easily restored and used again.
Scientists have long been searching for a way to control soaps (or surfactants as they are known in industry) once they are in solution to increase their ability to dissolve oils in water and then remove them from a system. The team at the University of Bristol have previously worked on soaps sensitive to light, carbon dioxide or changes in pH, temperature or pressure. Their latest breakthrough, reported in Angewandte Chemie, is the world’s first soap sensitive to a magnetic field.
Ionic liquid surfactants, composed mostly of water with some transition metal complexes (heavy metals like iron bound to halides such as bromine or chlorine) have been suggested as potentially controllable by magnets for some time, but it had always been assumed that their metallic centres were too isolated within the solution, preventing the long-range interactions required to be magnetically active.
Its magnetic properties also makes it easier to round up and remove from a system once it has been added, suggesting further applications in environmental clean ups and water treatment. Scientific experiments which require precise control of liquid droplets could also be made easier with the addition of this surfactant and a magnetic field.