Discovering The Insect’s Protein That Will Reduce The Use Of Insecticides

Despite the horrible effects of insecticides on human, but we can’t spare them as the insects will spread uncontrollably.
The researchers of Kansas State University, led by Sujata Chaudhari have discovered the protein that is responsible of keeping the shell of the insects so strong that allow the insects cover to stand for insecticides.

Sujata Chaudhari has discovered the protein responsible for keeping the shell of the insects healthy during the molting. The protein which is called nickkopf protein, is produced in the new skin “cuticle” help the new skin not to dissolve with the old skin.

Although this discovery that chitinase is stopped by a protein and not a physical barrier was made in the red flour beetle, Tribolium castaneum, the same protein is found in all other insect species examined, and probably has the same chitin-protective function, Chaudhari said. Most likely the same holds true for all arthropods: insects, arachnids, crustaceans, nematodes and other organisms. That’s a game-changer for scientists and inventors.
In the future, agricultural crop pests like the red flour beetle could find themselves the targets of insecticides or interfering RNAs that shut down the Knickkopf protein, leaving the insect’s body open to disease or to molting defects, said Richard Beeman, a Kansas State University entomology adjunct professor, researcher with the U.S. Department of Agriculture and collaborator on the project. Additionally, the beetle’s cuticle could be replicated into new lightweight body armor, prosthetics or materials for flight.
“The cuticle is a gigantic puzzle, and we’re slowly finding what the pieces are in the puzzle and how they interact to make the cuticle, organize it and digest it,” said Karl Kramer, a Kansas State University emeritus biochemistry adjunct professor and collaborator with the USDA, who also worked on the project. “In solving the puzzle, we could target these composition materials for improved insect control. We could also develop biomaterial that could be used in agriculture or medicine — or even make K-State football coach Bill Snyder some new protective padding for the Wildcats.”
The study, “Knickkopf protein protects and organizes chitin in the newly synthesized insect exoskeleton,” includes team members Yoonseong Park, a Kansas State University associate professor of entomology; Daniel Boyle, a Kansas State University research assistant professor of biology; Yasuyuki Arakane at Chonnam National University in Korea; Bernard Moussian at the University of Tuebingen in Germany; and Charles Specht at the University of Massachusetts. It was funded by a grant from the National Science Foundation.

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.