North Carolina State University researchers have reached a highly conductive and elastic conductors using silver nanoscale wires, the new elastic conductors can be used in the development of stretchable electronic devices.
A team led by North Carolina State University’s Dr. Yong Zhu reported success in creating elastic conductors made from carbon
nanotubes. Such conductors could be used in stretchable electronics, which could in turn find use in things like bendable displays, smart fabrics, or even touch-sensitive robot skin. Now, he has made some more elastic
conductors, but this time using silver nanowires – according to Zhu, they offer some big advantages over carbon nanotubes.
First, the nanowires are laid on a silicon plate. A liquid polymer is then poured over them and heated, which causes it to convert from a liquid to an elastic solid form. It is subsequently peeled off the silicon, with the nanowires now sealed inside of it – some previous attempts at stretchable electronics have involved the conductive material being deposited on the outside of the substrate, from which it could possibly delaminate over time.
When the polymer sheet is stretched for the first time, the surface of the side containing the wires relaxes back into a buckled, wavy form. Every time it’s stretched after that, it can be elongated by up to 50 percent without any detrimental effect on the nanowires’ conductivity. This is because the buckling allows the wires to stay in a fixed position relative to one another, regardless of whether the polymer is in a stretched or relaxed state.