Tufts University Produced Silk Protein To Keep Pharmaceuticals Safe

The controlled tempreture is the most important factor when transferring some of the essential pharmaceuticals as penicillin, tetracycline or MMR. As the unsuitable temperature can effect the pharmaceuticals. Tufts University researchers have reached a new way that can keep the pharmaceuticals safe using the silk protein made from the silkworm cocoons.

Fiorenzo Omenetto/Tufts University

Researchers at Tufts University School of Engineering have discovered a way to maintain the potency of vaccines and other drugs — that otherwise require refrigeration — for months and possibly years at temperatures above 110 degrees F, by stabilizing them in a silk protein made from silkworm cocoons. Importantly, the pharmaceutical-infused silk can be made in a variety of forms such as microneedles, microvesicles and films that allow the non-refrigerated drugs to be stored and administered in a single device.

The Tufts findings address a serious obstacle to the effective use of life-saving pharmaceuticals: keeping them cold. Most vaccines, enzymes, and antibodies and many antibiotics and other drugs require constant refrigeration from manufacture to delivery to maintain their effectiveness.

International health experts estimate that nearly half of all global vaccines are lost due to breakdowns in the “cold chain.” Even in industrialized nations, loss of drug efficacy at body temperature is a serious problem for advanced pharmaceutical delivery systems such as implantable drug-coated devices.

The research will be published before print in the Proceedings of the National Academy of Sciences (PNAS) Online Early Edition the week of July 9, 2012.
Tufts biomedical engineers led by David L. Kaplan, Ph.D., found that silk stabilization preserved the efficacy of the measles, mumps and rubella (MMR) vaccine, as well as penicillin and tetracycline, at a wide range of temperatures (at least up to 60 degrees C or 140 F) significantly better than other options such as collagen encapsulants, dried powders and solutions.

“Silk protein has a unique structure and chemistry that makes it strong, resistant to moisture, stable at extreme temperatures, and biocompatible, all of which make it very useful for stabilizing antibiotics, vaccines and other drugs. The fact that we can also make silk into microneedles to deliver a vaccine is an enormous added advantage that can potentially provide a lot of useful solutions to stabilization, distribution and delivery,” says Kaplan, who has been studying silk for two decades.

You can read the rest of the article in Tufts University site.

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.